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The formula for the effective area is now 

Ap = nr2 [(1 + 2 Hf1') + U(O); u(O) + 
I 

+ _1 S (dU dU) dX] 
TP P d.~ + d.?; 

o 

(2.2) 

of which expression (2.1) is a special case with U and 
u zero. We may evidently obtain (2.2) more directly 
by visualising the neutral surface as the effective 
boundary of the piston in which case the frictional 
force corresponding to b) above vanishes and we are 
left simply with the pressure forces acting on the 
effective boundaries of the piston. We also have the 
equivalent form 

Ap = nr2 [1 + 2 u(O)/r + 
I I 

+ r~ (S - h :; . dx + S p :~ . dX)] (2.3) 
o 0 

I 

which is convenient for use when the integral S - h 
o 

p 

:; dx (01' S h dp) is of interest, as is the case, for 
o 

example, when the flow method (section 5) is conside
red. 

b) The effects of special assumptions 

The problem of calculating the actual chanO'es of 
effective area of practical designs of piston-cylinder 
assembly, on the basis of the above general formulae, 
is complicated. It would be necessary to know the 
interrelated quantities u, U and p as functions of x , 
and since the pressure gradient dp/dx is governed by 
the normal equation of viscous flow (see equation 5.1), 
the pressure dependence of the coefficient of viscosity 
would also need to be taken into account. It is not, 
however, the aim of the present paper to attempt such 
calculations, but rather to describe direct experimen
tal methods for the accurate determination of the 
distortion factors with the minimum of assumptions 
regarding the detailed behaviour of the system. vVe 
therefore consider only certain special cases which are 
useful in the applications which follow. 

A useful approximation may be derived from the 
foregoing equations by assuming that the component 
of u(x) or U(x) due to the fluid pressure in the inter
space between piston and cylinder may be taken to 
be proportional to the pressure p(x) at the same posi
tion. The relevant terms in the integrals on the right 
hand side then become integrable without the neces
sity for any further lmowledge of the actual functional 
forms of ~t(x), U(x) or p(x). There is fair support from 
elastic theory for this assumption, more especially in 
the case of the solid cylinder in which the length is 
large compared with its radius, a condition which 
applies to the pistons of most pressure balance assem-

blies other than those catering for only a low range of 
pressure. CHREE (1889, 1901) has given polynomial 
solutions for the equilibrium of a finite solid cylinder 
for cases in which the lateral pressure is either a 
linear or quadratic function of the axial co· ordinate. 
The conditions are satisfied by functions u(x) and 
p(x) which are accurately proportional, provided the 
normal tractions over the flat ends, instead of beinO' 
identically zero, are assumed only to average to zero~ 
By Saillt-Venant's principle, however, the effect of 
this disturbance will be appreciable for only a short 
distance from each end, and may be neglected if the 
ratio of length to radius is considerable. The constant 
of proportionality is the same as in the case of uniform 
pressure on a solid cylinder of infinite length. FILON 
(1902) has obtained solutions for pressure distribu
tions expressed in series of trigonometric functions of 
x which lead to a similar result provided the wave
lengths involved are fairly large compared with the 
radius. The effects of discontinuous pressure distribu
tions, or narrow bands of applied pressure, have also 
been discussed (BARTON 1941; RANKIN 1944; TRANTER 
& CRAGGS 1947), with the general result that even the 
effects of discontinuities are largely lost at an axial 
distance of only about half the radius. If, therefore, 
the pressure changes along the length of the assembly 
are reasonably smooth, no great error is likely to be 
incurred by applying this assumption to the piston of 
the assembly. Taking into account the additional 
change of radius due to the end thrust on the piston, 
it is easily shown that the relevant terms involving u 
on the right hand side of equation (2.2) reduce to 
P (3 a - 1)/2 E where E and a are respectively Young's 
modulus and Poisson's ratio, so that we now have, 
using also (2.1), 

I 

A = A [1 + P(3a-1) + U(O) + _1-S dU . dX] 
p 0 2 E r 'rP p dx 

o 
(2.4) 

Another useful form, obtained directly from (2 .3), is 
p 

Ap = nr2 [1 + P(3; -1) + r~ S h dP]' (2.5) 

o 

The application of a similar assumption to deal 
with the effects of internal pressure in a hollow cylin
der with thick walls is less secure. CHREE (1901) has 
given a corresponding solution with U(x) and p(x) 
proportional for the case where p(x) is a linear func
tion of x, but its validity would depend on the condi
tions assumed at the ends. The case of a discontinuous 
distribution of pressnre has been considered briefly by 
TRANTER (1946). In the ideal case of a cylinder whose 
length is large compared with its radius and wall 
thickness, where the working section is removed some 
distance from the points of attachment of the ends, 
and the pressure distribution is reasonably smooth, 
a useful approximation may result. Proceeding from 
equation (2.4), and taking for defilliteness the case 
where the cylinder walls are not subjected to longitu
dinal stress, we then obtain (LOVE 1952), denoting by 
R' the outer radius of the cylinder, 

Ap = A {1 + ~ (3a-l) + ~[(1+a)R'2+(1-a)R2]} 
o 2E 2E R'2- R2 

(piston) (cylinder) 
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or, combining the distortion terms, 

Ap = Ao [1 + ~ (2 (j + R12~2 R2 )] (2.6) 

In the limiting case with R'I R effectively infinite 
this reduces to the simple expression 

Ap=Ao(1+
2
;.P). (2 .7) 

Equations (2.4) to (2.7) are a useful basis for the 
development of certain small correction terms which 
arise in the theory of the similarity and flow methods. 

3. The Similarity Method 

a) Principle of the method 
In normal practice the assemblies for which cali

brations are principally reqrured are constructed of 
steel. The principle adopted in the similarity method 
is first to determine the ratio ofthe effective area of the 
steel piston-cylinder assembly of given type, at a 
series of pressures, to that of a precisely similar 
assembly constructed of a material having a substan
tially different elastic modulus. This procedure deter
mines the difference between the distortion factors of 
the two assemblies as a function of pressure. A second 
relation - the quotient of the two distortion factors -
is obtained from measurements of the elastic moduli 
of the two materials. The combination of these results 
then allows the distortion factor of each assembly to 
be derived, as a function of pressure, in absolute terms. 

b) Ideal theory of the similarity method 
In its ideal form the similarity method is extremely 

simple, and involves no assumption regarding the 
form of distortion of the assembly when under pressure. 
In the ideal situation the two materials are regarded 
as elastically isotropic, with linear stress-strain rela
tionships and identical Poisson's ratios over the 
range of stress involved. The two assemblies are assu
med to be constructed to the same principal dimen
sions and to have accurately straight and circular 
pistons and cylinder bores. Ideally, the initial radial 
separations between the components of the two 
assemblies should be in inverse ratio to their 'elastic 
moduli, although it is found in practice that this 
condition is not critical. These conditions ensure that, 
as the distortion changes with increasing pressure, the 
annular channels between piston and cylinder will 
remain similar in form and that consequently the 
pressure distributions along the lengths of the channels 
will always remain the same for the same total applied 
pressure. 

If these assumptions are realised the distortion 
terms in the expressions for the effective areas will 
remain in a fixed numerical ratio as the pressure is 
varied. In other words the effective areas Ap and Bp 
of the two assemblies at the applied pressure P may 
be written in the form, 

Ap = Ao[l + AAf(P)]; Bp = Bo[l + ABf(P)] (3.1) 

where AA, AB are constants in inverse ratio to the 
elastic moduli, and f (P) is a function of the applied 
pressure of which the form is unknown but is the same 
in both cases. Bearing in mind that the distortion 
terms are normally very small compared with unity, 
the ratio of the areas may be expressed in the form 

~; = ~: [1 + (AA -AB)f(P)] (3.2) 

and writing AB =. kAA, where k is a constant, we 
obtain 

~; = ~: [1 + (1- k)AAt(P)] . (3.3) 

The ratio Api Bp, and consequently the function 
(1 - k) AA t (P) , may be determined easily and with 
high precision by simply measuring the loads on the 
two pistons when the assemblies are balanced against 
one another and in eqcilibrium at the same pressure, 
and carrying out this procedure at a series of pressures 
over the appropriate range. The quotient, k, of the 
elastic moduli may be determined by the standard 
methods for the measurement of elastic constants. It 
is clear that in the ideal conditions postulated these 
two procedures suffice to establish the values of the 
distortion terms AA f(P) and AB f(P) to an accuracy 
limited only by the sen~itivity of the balancing process 
and the precision to which the elastic constants are 
known. In general it is found to be the second factor 
which eventually limits the accuracy attainable, and 
to obtain the best precision k should evidently differ 
substantially from unity. 

It is of particular interest that the rheological 
properties of the pressure transmitting fluid - e. g. 
dependence of coefficient of viscosity upon pressure -
are entirely eliminated in the similarity procedure. 

In order to simplify further discussion it is useful 
at this point to anticipate one practical result of the 
investigation, viz. that in most cases the distortion is 
vm:y closely represented by a linear function of the 
applied pressure so that we may normally replace 
f(P) by P, when the quantities AA and . .AB may be 
regarded simply as pressure coefficients having the 
dimensions (pressure)- l. Thus we may write instead 
of (3 .1), Ap = Ao (1 + AAP) etc. , in all but excep
tional cases. 

c) Effect of departures from the ideal conditions 
It would be a somewhat fortunate coincidence if 

the ideal assumptions were completely realised in a 
pair of actual metals having a sufficiently large ratio 
of elastic moduli, and also adequate tensile strengths, 
to justify their use in practice, and it is necessary to 
consider to what extent minor departures may be 
tolerated or whether reliable correction terms can be 
developed. Materials showing appreciable elastic 
anisotropy are hardly worth consideration owing to the 
greatly increased complexity of the distortion of the 
system, and the labour of determining the complete 
set of elastic constants over a wide range of stress. 
Again, a pronounced departure from a linear str~ss
strain relation would introduce awkward complica
tions; small departures may be tolerable, subject to .a 
corresponding uncertainty in the value of the elastIC 
modulus. In the case of a moderate difference in the 
values of the Poisson's ratios, however, it is not 
difficult to formulate a correction term. This is small 
and need only be evaluated approximately. :For- thls 
purpose we make use of the formula (2.4), and express 
the distortion coefficients in the form AA = e.A + (jJ A . .• 

where 
eA = (3 (j(A) - 1)/2 E(A) •. • (3.4) 

and (jJA is that part of AA which is explicitly dependent 


